Part Number Hot Search : 
BA5N10 74HCH 1SMC75CA MD6020H 48A12H15 3440B PE7644DV NTE2318
Product Description
Full Text Search
 

To Download TGA2520 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 Advance Product Information
12-16 GHz High Linearity Amplifier
TGA2520
Key Features and Performance
* * * * * * 31 dBm Midband Pout 33 dB Nominal Gain TOI > 40 dBm 0.5 m pHEMT 3MI Technology Bias Conditions: 6 V, 850mA Chip dimensions: 2.5 x 1.4 x 0.1 mm (98 x 55 x 4 mils)
Preliminary Measured Data
Bias Conditions: Vd=6 V Id=850 mA
40 35 30
Primary Applications
* * * Point-to-Point Radio VSAT Ku Band Sat-Com
S-Parameters (dB)
25 20 15 10 5 0 -5 -10 -15 -20 12 13 14 15
Gain IRL ORL
Product Description
The TriQuint TGA2520 MMIC is an extremely linear, high gain amplifier, capable of 1 Watt output power at P1dB for the frequency range of 12 - 16 GHz. This performance makes this amplifier ideally suited for Point to Point Radios and current Ku-Band satellite ground terminal applications. The TGA2520 utilizes TriQuint's robust 0.5um power pHEMT process coupled with 3 layer Metal Inteconnect (3MI) technology. The TGA2520 provides the high power transmit function in an extremely compact (< 3.5mm2) chip footprint. The combination of a high-yield process, electrical performance, and compact die size is exactly what is required to support the aggressive pricing targets required for low-cost transmit modules. Each device is 100% DC and RF tested on-wafer to ensure performance compliance. The device is available in chip form.
16
Freq (GHz)
45
TOI @ 20dBm/tone output, P1dB (dBm)
43 41 39 37 35 33 31 29 27 25 12 13 14 15 16
TOI P1dB
Freq (GHz)
Note: This device is early in the characterization process prior to finalizing all electrical test specifications. Specifications are subject to change without notice. 1
TriQuint Semiconductor Texas www.triquint.com Phone : (972)994-8465 Fax: (972)994-8504 info-mmw@tqs.com
June 2006
TGA2520
TABLE I MAXIMUM RATINGS Symbol V I
+ -
Parameter 1/ Positive Supply Voltage Negative Supply Voltage Range Positive Supply Current (under RF Drive) Gate Supply Current Range Input Continuous Wave Power Power Dissipation Operating Channel Temperature Mounting Temperature (30 Seconds) Storage Temperature
Value 8V -5V to 0V 1300 mA -7 to 56 mA 23.2 dBm 6W 150 C 320 C -65 to 150 0C
0 0
Notes 2/ 2/ 2/ 2/ 3/ 3/ 4/ 5/
V
+
IG PIN PD TCH TM TSTG 1/ 2/ 3/ 4/ 5/
These ratings represent the maximum operable values for this device. Combinations of supply voltage, supply current, input power, and output power shall not exceed PD. When operated at this bias condition with a base plate temperature of 70 C the median life is reduced to 1.0 E+6. These ratings apply to each individual FET. Junction operating temperature will directly affect the device median time to failure (TM). For maximum life, it is recommended that junction temperatures be maintained at the lowest possible levels.
2
TriQuint Semiconductor Texas www.triquint.com Phone : (972)994-8465 Fax: (972)994-8504 info-mmw@tqs.com
June 2006
TGA2520
TABLE II RF CHARACTERIZATION TABLE (TA = 25C, Nominal) (Vd =6 V, Id = 850mA 5%) SYMBOL PARAMETER TEST CONDITION F = 12-16 LIMITS MIN TYP MAX 33 UNITS
Gain
Small Signal Gain
dB
IRL
Input Return Loss
F = 12-16
8
dB
ORL
Output Return Loss
F = 12-16
12
dB
PWR
Output Power @ Pin = +5 dBm
F = 12-16
31
dBm
Note: Table II Lists the RF Characteristics of typical devices as determined by fixtured measurements.
TABLE III THERMAL INFORMATION PARAMETER Rjc Thermal Resistance (Channel to Backside) TEST CONDITION VD = 6 V ID = 850 mA PD = 5.1 W Vd = 6V Id = 1200 mA (under drive) Pdiss = 6 W Pout = 1.2 W (RF) TCH (C) Rjc (C/W) 13.33 MTTF (HRS) 2.9 E+6
138
Rjc Thermal Resistance (Channel to Backside)
150
13.33
1.0 E+6
Note: Assumes eutectic attach using 1.5mil 80/20 AuSn mounted to a 20mil CuMo carrier at 70C baseplate temperature. Worst case condition with no RF applied, 100% of DC power is dissipated.
3
TriQuint Semiconductor Texas www.triquint.com Phone : (972)994-8465 Fax: (972)994-8504 info-mmw@tqs.com
June 2006
TGA2520
Typical Fixtured Performance
40 35 30
Gain (dB)
25 20 15 10 5 0 10 11 12 13 14 15 16 17 18 19
Freq (GHz)
0
IRL ORL
Return Loss (dB)
-5
-10
-15
-20 10 11 12 13 14 15 16 17 18 19
Freq (GHz)
4
TriQuint Semiconductor Texas www.triquint.com Phone : (972)994-8465 Fax: (972)994-8504 info-mmw@tqs.com
June 2006
TGA2520
Typical Fixtured Performance
36 35 34 33
P1dB (dBm)
32 31 30 29 28 27 26 25 24 11 12 13 14 15 16 17
Freq (GHz)
45
TOI (dBm) @ 20dBm/tone output
43 41 39 37 35 33 31 29 27 25 11 12 13 14 15 16 17 18
Freq (GHz)
5
TriQuint Semiconductor Texas www.triquint.com Phone : (972)994-8465 Fax: (972)994-8504 info-mmw@tqs.com
June 2006
TGA2520
Typical Fixtured Performance
20 14 8 2 -4 -10 -16 -22 -28 -34 -40 -46 10 12 14 16 18 20 22 24 26 28 30 32
Average IMD3/tone (dBm)
12 GHz 13 GHz 14 GHz 15 GHz 16 GHz
Fundamental Pout/tone (dBm)
6
TriQuint Semiconductor Texas www.triquint.com Phone : (972)994-8465 Fax: (972)994-8504 info-mmw@tqs.com
June 2006
TGA2520
Mechanical Drawing
7
TriQuint Semiconductor Texas www.triquint.com Phone : (972)994-8465 Fax: (972)994-8504 info-mmw@tqs.com
June 2006
TGA2520
Chip Assembly & Bonding Diagram Vd
0.01 pF 100pF Off chip R=10 Off chip C=0.1F
Input TFN
Output TFN
Vg
Off chip R=10 Off chip C=0.1F
100pF
Typical Vg -0.5 V
GaAs MMIC devices are susceptible to damage from Electrostatic Discharge. Proper precautions should be observed during handling, assembly and test.
8
TriQuint Semiconductor Texas www.triquint.com Phone : (972)994-8465 Fax: (972)994-8504 info-mmw@tqs.com
June 2006
TGA2520
Assembly Process Notes
Reflow process assembly notes: * * * * * Use AuSn (80/20) solder with limited exposure to temperatures at or above 300C. (30 seconds maximum) An alloy station or conveyor furnace with reducing atmosphere should be used. No fluxes should be utilized. Coefficient of thermal expansion matching is critical for long-term reliability. Devices must be stored in a dry nitrogen atmosphere.
Component placement and adhesive attachment assembly notes: * * * * * * * Vacuum pencils and/or vacuum collets are the preferred method of pick up. Air bridges must be avoided during placement. The force impact is critical during auto placement. Organic attachment can be used in low-power applications. Curing should be done in a convection oven; proper exhaust is a safety concern. Microwave or radiant curing should not be used because of differential heating. Coefficient of thermal expansion matching is critical.
Interconnect process assembly notes: * * * * * Thermosonic ball bonding is the preferred interconnect technique. Force, time, and ultrasonics are critical parameters. Aluminum wire should not be used. Discrete FET devices with small pad sizes should be bonded with 0.0007-inch wire. Maximum stage temperature is 200C.
GaAs MMIC devices are susceptible to damage from Electrostatic Discharge. Proper precautions should be observed during handling, assembly and test.
9
TriQuint Semiconductor Texas www.triquint.com Phone : (972)994-8465 Fax: (972)994-8504 info-mmw@tqs.com
June 2006


▲Up To Search▲   

 
Price & Availability of TGA2520

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X